
PYTHON FOR GAMMA-
RAY ASTRONOMY

Christoph Deil (MPIK Heidelberg) 

March 21, 2016  
PyAstro15 in Seattle

1

http://python-in-astronomy.github.io/2016/


GAMMA-RAY 
ASTRONOMY

Space and ground telescopes

2

➤ Brief introduction to gamma-ray 
telescopes and data (will go very 
quickly over slides in this section) 

➤ No time to cover astrophysics, if 
you’re interested, here’s a good 
recent review: 2015arXiv150805190F
Space- and Ground-Based

Gamma-Ray Astrophysics

Stefan Funk

1
,

2

1
Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität

Erlangen-Nürnberg, Erwin-Rommel-Str. 1, D-91058 Erlangen, Germany

2
Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics

and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA

94305, USA

Xxxx. Xxx. Xxx. Xxx. 2015. 00:1–47

This article’s doi:

10.1146/((please add article doi))

Copyright

c� 2015 by Annual Reviews.

All rights reserved

Keywords

Dark Matter Cosmic rays Gamma-ray Astronomy Fermi-LAT Imaging

atmospheric Cherenkov Telescopes Galactic Center

Abstract

In recent years, observational �-ray astronomy has seen a remarkable

range of exciting new results in the high-energy and very-high en-

ergy regimes. Coupled with extensive theoretical and phenomenological

studies of non-thermal processes in the Universe these observations have

provided a deep insight into a number of fundamental problems of high

energy astrophysics and astroparticle physics. Although the main moti-

vations of �-ray astronomy remain unchanged, recent observational re-

sults have contributed significantly towards our understanding of many

related phenomena. This article aims to review the most important

results in the young and rapidly developing field of �-ray astrophysics.

1

ar
X

iv
:1

50
8.

05
19

0v
1 

 [a
st

ro
-p

h.
H

E]
  2

1 
A

ug
 2

01
5



ELECTROMAGNETIC SPECTRUM

Gamma-rays are the high-energy end of the electromagnetic spectrum. 

Observe photons of energy MeV to ~ 100 TeV  
(optical light is ~ 1 eV,  X-rays are ~ 1 keV)

3



4



FERMI-LAT PAIR PRODUCTION TELESCOPE

5



FERMI-LAT PAIR PRODUCTION TELESCOPE

Tracker  
— Event direction

Calorimeter — Energy

Anti-coincidence shield  
— Particle type (proton,  
electron, photon, …)  
 
Needed to distinguish small 
fraction (1 in 10k) of 
photons among charged 
cosmic ray background.

High-level data is basically an event list table (TIME, ENERGY, RA, DEC)  
+ spacecraft file (GTIs, pointing)  
+  instrument response functions (effective area, PSF) 6



FERMI-LAT OBSERVATIONS

➤ Start: 2008. Continuous all-
sky survey for past 7+ years 

➤ Large field of view — observe 
good fraction of the whole sky 
at any given time 

➤ Earth orbit + rocking pattern 
— observe every source every 
few hours

Vela pulsar location in Fermi-LAT  
field of view as a function of time

Exposure vs time for a given source on one day

7



FERMI-LAT — FIRST GOOD VIEW OF THE GEV GAMMA-RAY SKY

Energy range: 100 MeV — 1 TeV  
Resolution: 10 deg — 0.1 deg !

Galactic diffuse emission, 3000 sources detected (e.g blazars, pulsars, SNRs, …)  
Every source is a cosmic particle accelerator more powerful than the LHC!

8



PHOTON STATISTICS

➤ The Fermi-LAT is an awesome 
gamma-ray telescope. 

➤ But at ~ 1 TeV it runs out of 
statistics, because gamma-ray 
spectra are steep power-laws. 

➤ Brightest sources observed for 
10 years with a 1 m^2 
detector yield a few photons. 

➤ For very-high-energy gamma-
ray astronomy (> 1 TeV), 
other telescopes are needed!

1 m  x  1 m

9



10

Gamma-ray  
photon “Air shower”

Cherenkov light

Cherenkov telescope arrays  
on the ground

Shower image
1 km^2

1 m^2

Camera with nano-second 
time resolution



IMAGING ATMOSPHERIC CHERENKOV TELESCOPE ARRAY (IACT)

Several shower images:  
- Particle ID (cosmic ray, photon)  
- Event direction (~ 0.1 deg)  
- Event energy

Atmosphere is part of detector -> km**2 detection area -> TeV astronomy!

11



EXISTING IACTS

➤ Energy range roughly 
100 GeV — 100 TeV 

➤ Pointed observations with field 
of view of a few degrees. 

➤ Each array has a few 
telescopes, total cost ~ 10 M$ 

➤ Built by collaborations of 
~100 astronomers 

➤ Data and software from current 
IACTs not publicly available. 

➤ (Fermi-LAT is a NASA mission 
with ~ 600 M$. All data and 
software is publicly available!)

MAGIC, La Palma

VERITAS, Arizona

H.E.S.S., Namibia

12



TEV GAMMA-RAY SOURCES

➤ First ground-based gamma-ray 
source detection: 
Crab nebula in 1989 

➤ Already ~ 150 detected now! 
:-) 

➤ Only a few % of the sky have 
been surveyed so far.

H.E.S.S. Galactic plane survey

H.E.S.S.  
survey

13



CHERENKOV TELESCOPE ARRAY (CTA)

14

Next step: build more and better Cherenkov telescopes!



CHERENKOV TELESCOPE ARRAY

➤ 100 telescopes in Chile 
20 telescopes on La Palma 
(site negotiations still ongoing) 

➤ International consortium with 
already 30 countries and 1000 
astronomer members 

➤ Cost ~ 300 M$ 

➤ Open observatory with guest 
observers and archive, as is 
common in other wavelengths. 

➤ Prototype telescopes taking data. 
Array construction starts 2017. 
Full array operational ~ 2024.

LMC now LMC with CTA  
 
 
 
 
(simulation)

CTA south array CTA north array

15



CTA — BIG AND SMALL DATA

➤ Raw data consists of images or little 
movies of air showers 

➤ Raw data rate is ~ 10 GB / s 
Big data! 

➤ Data center: low-level CTA pipeline 
for calibration, event reconstruction, 
gamma-hadron separation. 

➤ Results in much-reduced dataset: 
event list with just a few parameters 
per event (time, energy, RA, DEC)  
Small data! 

➤ Astronomers, on their laptop with 
downloaded FITS data (like Fermi-
LAT today): high-level CTA science 
tools for source detection as well as 
time, spatial and spectral analysis.

O(100) Telescopes On the Ground O(1000) Pixels, O(1) channels

telescope position (m)

O(10) Time slices 

O(10) are triggered per event

16

One of the first observed events from a CTA 
prototype telescope (~ ns time resolution)



CODES 
C++  

PYTHON
in gamma-ray astronomy

17

how do we use python to help implement 
these algorithms?

FRAMEWORK

12



C++ & ROOT
➤ For the past decades, gamma-ray 

astronomy was mostly done by people 
from high-energy physics. 

➤ For the past ~ 20 years until very 
recently , this meant C++ & ROOT 

➤ ROOT provides everything! 

➤ Scientific computing library 

➤ I/O (auto C++ object 
serialisation) 

➤ GUI framework 

➤ Interactive REPL and scripting 
(ACliC, now Cling) 

➤ Python interface PyROOT (fancy 
auto wrapper generator, using 
ROOT introspection, not SWIG).

18



STATUS

➤ Ground-based gamma-ray 
telescopes have proprietary 
software (C++ & ROOT, no 
Python) and data formats 
(serialised ROOT objects). 

➤ Space-based gamma-ray 
telescopes (at least Fermi-
LAT) have C++ & ROOT-
based low-level pipeline, but 
the astronomer gets: 

➤ Data in FITS format 

➤ Science tools are C++ with 
SWIG Python wrapper

19



CTA SOFTWARE?

20



CTA SOFTWARE

➤ Very active development ongoing 
for low-level and high-level 
software. 

➤ Many ideas and prototypes by 
different groups. 

➤ Making decisions and going toward 
production codes is hard because so 
far no strong central management 
(CTA is not an ESO project). 

➤ It looks like most CTA software will 
be C, C++ or Python. 
(Also Java used for array control.) 

➤ Somewhat surprisingly: not ROOT! 
(HEP -> astro community change?)

21



A MAJOR QUESTION FOR CTA

C/C++

BUILDING A FRAMEWORK

        Bottom-Up approach             Top-Down approach

13

Python
Python

C/C++

Numba, 
Cython

Most current frameworks did 
it this way (if they use 

python at all)

Our approach: start early 
with python and high-level 

API

start 
here

start 
here

22



CTAPIPE

➤ CTA offline analysis Python 
pipeline prototype. 

➤ Python package, built on 
Scientific Python stack and 
Astropy, started from Astropy 
affiliated package template. 

➤ Open-source and on Github as 
cta-observatory/ctapipe. 

➤ Chosen over many C and C++ 
based proposals and prototypes. 
Still a bit controversial if 
Python is efficient enough. 

➤ Python 3 only!

CORE DEPENDENCIES

14

pyhessio
(access to 
simtelarray 
datasets)

libhessio

leverage code developed by wide scientific and industrial community!

C/C++

BUILDING A FRAMEWORK

        Bottom-Up approach             Top-Down approach

13

Python
Python

C/C++

Numba, 
Cython

Most current frameworks did 
it this way (if they use 

python at all)

Our approach: start early 
with python and high-level 

API

start 
here

start 
here

23

https://github.com/cta-observatory/ctapipe


GAMMALIB & CTOOLS
➤ C++ with SWIG Python wrapper 

➤ Gammalib 

➤ generic library for gamma-ray 
event data, with instrument 
modules for CTA, Fermi-LAT, … 

➤ No dependencies (except CFITSIO) 
for easy long-term maintenance. 

➤ 120k SLOC 

➤ ctools 

➤ software tools (like FTOOLS) for 
IACT analysis implemented using 
Gammalib 

➤ is being proposed as a prototype 
for the official CTA science tools

C/C++

BUILDING A FRAMEWORK

        Bottom-Up approach             Top-Down approach

13

Python
Python

C/C++

Numba, 
Cython

Most current frameworks did 
it this way (if they use 

python at all)

Our approach: start early 
with python and high-level 

API

start 
here

start 
here

24



GAMMAPY

➤ Python package for gamma-ray 
science tools data analysis 
(provisionally accepted as an 
Astropy-affiliated package) 

➤ Produce images, spectra, light 
curves for event data from 
telescopes such as H.E.S.S., CTA or 
Fermi-LAT. 

➤ Fermi analysis directly or via 
Fermipy & Fermi ScienceTools. 

➤ Development pretty active

Gammapy – A Python package for g-ray astronomy Axel Donath

Figure 1: Gammapy is a Python package for high-level g-ray data analysis. Using event lists, exposures
and point spread functions as input you can use it to generate science results such as images, spectra, light
curves or source catalogs. So far it has been used to simulate and analyse H.E.S.S., CTA and Fermi-LAT
data, hopefully it will also be applied to e.g. VERITAS, MAGIC or HAWC data in the future.

1. Introduction

1.1 What is Gammapy ?

Gammapy is an open-source Python package for g-ray astronomy. Originally Gammapy started
as a place to share morphology fitting Python scripts for the work on the H.E.S.S. Galactic plane
survey [1] two years ago. Since that time Gammapy has grown steadily: functionality as well
as development infrastructure has been improved and it has been accepted as an in-development
Astropy-affiliated package. Now, in this proceeding, we would like to introduce Gammapy to the
community and present our vision of Gammapy as a future community-developed, general purpose
analysis toolbox for g-ray astronomers.

The general concept of Gammapy is illustrated in Figure 1. Based on pre-processed input
data (e.g. event lists) provided by instruments such as H.E.S.S., Fermi or CTA, Gammapy offers
the high-level analysis tools to generate science results such as images, spectra, light curves and
source catalogs. By using common data structures and restriction to binned analysis techniques, all
input data can be treated the same way, independent of the instrument. Research already making
use of Gammapy is presented in [1, 2, 3].

1.2 How to get Gammapy

Recently Gammapy version 0.3 was released. It is available via the Python package index 1 or
using package manager tools like pip and conda. Gammapy works on Linux and Mac (Windows
most likely as well, but this has not been tested yet) and is compatible with Python 2.7 and Python

1https://pypi.python.org/pypi/gammapy/

2

25



GAMMAPY

➤ Python first and use dependencies: 

➤ Builds on Astropy and Sherpa, 
as well as Naima, Fermipy and a 
few other packages like 
reproject or photutils. 

➤ Similar to ctapipe approach, 
different from Gammalib / ctools 

➤ So far mainly used for research with 
H.E.S.S. data exported to FITS. 

➤ Could propose as prototype for 
official CTA science tools. 

➤ Plan: 1.0 release this summer, 
a paper in summer or fall.

Gammapy – A Python package for g-ray astronomy Axel Donath

Figure 2: The Gammapy stack. Required dependencies Numpy and Astropy are illustrated with solid
arrows, optional dependencies (the rest) with dashed arrows.

3.3 or later. Further details on requirements and installation are available online 2. The latest
documentation is available on Read the Docs 3, including tutorials, code and analysis examples.
We have also set up a mailing list for user support and discussion 4.

2. The Gammapy stack

Gammapy is primarily built on the scientific Python stack. We employ Numpy and Astropy [4]
as main dependencies and integrate other packages as optional dependencies where necessary. The
current dependency structure is illustrated in Figure 2. Numpy provides the low level data struc-
tures and the framework for numerical/array computations. Astropy is used for higher level data
structures like tables (Table) and n-dimensional data objects (NDData), for I/O, coordinates and
WCS transformations, and handling of physical quantities with units. Scipy is used for advanced
numerical and data processing algorithms. For specific image processing routines we additionally
use scikit-image.

To allow morphology and spectral fitting of TeV sources with Gammapy we use the established
X-ray modelling and fitting package Sherpa [5]. Sherpa allows interactive and scripted fitting of
data sets with various spectral, light curve and morphology models taking instrument response
functions into account. Additionally, it is possible to determine confidence levels on best-fit model
parameters, compute likelihood profiles and goodness of fit measures. Sherpa recently also became
an open-source project which makes it possible for users and external developers to contribute
missing functionality or fix issues themselves in future.

2https://gammapy.readthedocs.org/en/latest/install.html
3https://gammapy.readthedocs.org/en/latest
4https://groups.google.com/forum/#!forum/gammapy

3

C/C++

BUILDING A FRAMEWORK

        Bottom-Up approach             Top-Down approach

13

Python
Python

C/C++

Numba, 
Cython

Most current frameworks did 
it this way (if they use 

python at all)

Our approach: start early 
with python and high-level 

API

start 
here

start 
here

26



GAMMAPY DEVELOPMENT

27

Version control, issue tracker,  
contributions via pull requests & code review

Tests automatically run on Linux & Mac 
on each pull request and master branch

Binary cross-platform package manager.  
Install Gammapy and all dependencies on any  
Linux & Mac box in $HOME in 10 min.

Python testing framework 
(makes it easy to write and run tests)

Python documentation generator  
API and narrative docs pages 

cross-linked, full-text search

We use the awesome and free tools and infrastructure like Astropy  
and most open-source Python packages these days …



SHERPA

➤ Awesome general modeling and 
fitting package (similar, but 
different from astropy.modeling)

NAIMA

➤ Astropy-affiliated package for 
non-thermal SED modeling. 
Fitting using emcee or Sherpa

FERMIPY

➤ Fermi-LAT data analysis for humans 
(using Fermi ScienceTools SWIG 
Python interface in the background)

naima: inference of relativistic particle energy distributions V. Zabalza

Figure 3: H.E.S.S. spectrum of RX J1713–3946 [13], computed spectrum from a hadronic model, and
residuals of the maximum likelihood model (bottom panel). The thick black line indicates the maximum
likelihood spectrum, and the gray lines are 100 samplings of the posterior distribution of the model parameter
vector. The inset shows the energy distribution of the proton population in erg versus the proton energy in
TeV.

uncorrelated, gaussian errors. Even though this may be incorrect for many spectra, mostly when
considering fine structure, it is often the only approach possible when simultaneously fitting pub-
lished spectra from radio to VHE gamma-rays. When instrument response functions are available,
a way to avoid this assumption is to use the sherpa models in naima.sherpa_models.

Future development of the package will focus on the addition of simple particle cooling func-
tions (more complex physics, such as time-dependent particle evolution, should be done on a
case-by-case basis), and use of naima radiative models in gammapy [15], a Python package for
gamma-ray data analysis.

Acknowledgments

The author would like to thank F. Aharonian, for providing the motivation to develop a package
such as naima and make it public for general use; D. Khangulyan, E. Kafexhiu, and G. Vila for
their discussions on radiative model implementation; and C. Deil for his contributions to the source
code that have helped make naima more robust and user friendly. naima makes use of Astropy, a
community-developed core Python package for Astronomy [2], and matplotlib, a Python library
for publication quality graphics [16].

7

All open-source, open-development projects on Github! 28



GAMMAPY APPLICATION EXAMPLE

With very little Python code, go from an event list  
to a source catalog for the H.E.S.S. Galactic plane survey.

29



WRAP-UP
Python in gamma-ray 

astronomy
30



SUMMARY

➤ Space- and ground-based gamma-ray observations are used to 
study cosmic particle accelerators and the non-thermal universe. 

➤ Ground-based gamma-ray astronomy is so far done with C++ / ROOT 
based codes in collaborations (no public data or software access). 

➤ The Cherenkov Telescope Array (CTA) is coming 

➤ Open observatory and data, open-source software. 

➤ Competing concepts on C / C++ / Python software and 
dependency stack are being prototyped and proposed. 

➤ Open-source codes using scientific Python stack and Astropy: 
ctapipe, Gammapy, Naima, Fermi

31



THANK YOU!

➤ For organising PyAstro16! 

➤ For the opportunity to give this 
presentation. 

➤ For building the Astropy 
package and community! 

➤ For providing and maintaining 
important infrastructure for 
Python and astronomy 

➤ Astropy core 

➤ package template 

➤ ci-helpers 

➤ Astropy conda channel

32



Comments?  
Questions?

33



BACKUP SLIDES



SIDE COMMENT: OPEN IACT DATA EFFORT

➤ “Python in gamma-ray astronomy” workshop, 
November 16 — 20,  2015, MPIK Heidelberg 
http://gammapy.github.io/PyGamma15/  

➤ Agreed to start an open gamma-ray astronomy effort: 
https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro  
https://github.com/open-gamma-ray-astro  

➤ Open IACT DL3 specifications (Github & Readthedocs) 

➤ IACT DL3 meeting in Meudon in April 2016 
(participants from all existing IACTs and CTA)

35

http://gammapy.github.io/PyGamma15/
https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro
https://github.com/open-gamma-ray-astro
https://github.com/open-gamma-ray-astro/gamma-astro-data-formats
https://github.com/open-gamma-ray-astro/2016-04_IACT_DL3_Meeting


GAMMAPY SOFTWARE CHALLENGES

➤ Decide how to do modeling / fitting?  
Sherpa, or astropy.modeling, or roll our own? 

➤ How to structure the functionality into sub-packages so that it 
makes sense and circular imports are avoided. 

➤ Which patterns to use to implement analysis workflows? 

➤ Where to use functions? classes? config objects? results 
objects? 

➤ How to expose this both as a Python API and as command line 
tools? 

➤ Software distribution (e.g. no conda package for Fermi 
ScienceTools yet, conda packages for Healpy, Sherpa, … changing).

36


