
UNDERSTANDING NUMBA 
THE PYTHON AND NUMPY COMPILER
Christoph Deil & EuroPython 2019  
Slides at https://christophdeil.com  

�1

https://christophdeil.com

DISCLAIMER: I DON’T
UNDERSTAND NUMBA!

�2

ABOUT ME
➤ Christoph Deil, Gamma-ray astronomer from Heidelberg

➤ Not a Numba, compiler, CPU expert

➤ Recently started to use Numba, think it’s awesome. 
This is an introduction.

�3

WHY USE NUMBA?

�4

GAMMA-RAY ASTRONOMY
➤ Lots of numerical computing: data

calibration, reduction, analysis

➤ Need both interactive data and method
exploration and production pipelines.

➤ Software often written by astronomers,
not professional programmers

H.E.S.S. telescopes, Namibia

Cherenkov Telescope Array (CTA)  
Southern array (Chile) - coming soon

�5

TWO APPROACHES TO WRITE SCIENTIFIC OR NUMERIC SOFTWARE

C/C++

BUILDING A FRAMEWORK

 Bottom-Up approach Top-Down approach

13

Python
Python

C/C++

Numba,
Cython

Most current frameworks did
it this way (if they use

python at all)

Our approach: start early
with python and high-level

API

start
here

start
here

Image credit: Karl Kosack �6

CTA SOFTWARE
➤ Prototyping the Python first approach

➤ Use Python/Numpy/PyData/Astropy

➤ Use Numba/Cython/C/C++ for  
few % of performance-critical functions

�⇡ A Python package for
gamma-ray astronomy

�7

PYTHON IN ASTRONOMY

➤ “Python is a language that is very powerful for
developers, but is also accessible to Astronomers.”  
— Perry Greenfield, STScI, at PyAstro 2015

Thanks to Juan Nunez-Iglesias,
Thomas P. Robitaille, and Chris Beaumont.

Mentions of Software in
Astronomy Publications:

Compiled from NASA ADS (code).
�8

THE UNEXPECTED EFFECTIVENESS OF PYTHON IN SCIENCE
➤ Keynote PyCon 2017 by Jake VanderPlas

➤ “For scientific data exploration, speed of development
is primary, and speed of execution is often secondary.”

➤ “Python has libraries for nearly everything …  
it is the glue to combine the scientific codes”

Python is Glue.

$ whoami
jakevdp

�9

WHY DO WE NEED NUMBA?
➤ Some algorithms are hard to write in Python & Numpy.

➤ Example: Conway’s game of life 
See https://jakevdp.github.io/blog/2013/08/07/conways-game-of-life/

➤ Writing C and wrapping it for Python can be tedious.

“Don’t write Numpy Haikus. If loops are simpler, write loops and use Numba!”  
— Stan Seibert, Numba team, Anaconda

�10

https://jakevdp.github.io/blog/2013/08/07/conways-game-of-life/

INTRODUCING NUMBA

�11

WHAT IS NUMBA? — HTTPS://NUMBA.PYDATA.ORG

�12

https://numba.pydata.org

WHAT IS NUMBA?

“Numba” = “NumPy”+ “Mamba”  
Numba crunching in Python, fast like Mambas.

Numba logo (https://numba.pydata.org)

�13

https://numba.pydata.org

NUMBA ACCELERATES NUMERICAL PYTHON FUNCTIONS

400 ms — very slow

�14

NUMBA ACCELERATES NUMERICAL PYTHON FUNCTIONS

13 ms — Numba/Python speedup: 30x

Tell Numba to JIT  
your function

�15

NUMBA UNDERSTANDS NUMPY
➤ Use Numpy if you want! 

Use Python for loops if you want!

➤ Numba will compile either way to
optimised machine code

�16

EVOLUTION OF A SCIENTIFIC PROGRAMMER COMING TO PYTHON

�17Credit: Jason Watson (PyGamma19)

NUMBA LIMITATIONS
➤ Numba compiles individual functions. 

Not whole programs like e.g. PyPy

➤ Numba supports a subset of Python. 
Some dict/list/set support, but not mixed
types for keys or values

➤ Numba supports a subset of Numpy. 
Ever growing, but not all functions and
all arguments are available.

➤ Numba does not support pandas or
other PyData or Python packages.

TypingError: Failed in nopython mode pipeline

�18

NUMBA.JIT MODES
➤ @numba.jit has a fallback “object”

mode, which allows any Python code.

➤ This “object” mode results in machine
code, but with PyObject and Python C
API calls, and same performance as using
Python directly without Numba

➤ Not what you want 99% of the time

➤ To get either the desired “nopython”
mode, or a TypingError you can use
@numba.jit(nopython=True) 
or the equivalent @numba.njit

NumbaWarning: Compilation is  
falling back to object mode  
['spam', 42, 'spam', 42, 'spam', 42]

TypingError: Failed in nopython mode pipeline

�19

NUMBA.OBJMODE CONTEXT MANAGER
➤ To call back to Python there is numba.objmode (rarely needed)

➤ Can be useful in long-running functions e.g. to log or update a progress bar

�20

UNDERSTANDING NUMBA 
(A LITTLE BIT)

�21

UNDERSTANDING NUMBA

https://youtu.be/LLpIMRowndg

“Numba is a type-specialising JIT compiler from Python bytecode using LLVM”

�22

https://youtu.be/LLpIMRowndg

PYTHON & NUMBA & LLVM

�23

PYTHON
➤ Python compiler starts with source code,

parses it into an Abstract Syntax Tree
(AST), then transforms it to Bytecode

➤ Happens on import of a module

➤ Bytecode for a function is attached to the
Python function object (code=data)

�24

NUMBA
➤ On @numba.jit decorator call, Numba 

makes a CPUDispatcher proxy object.

➤ On function call, Numba will:

➤ JIT compile Bytecode to LLVM IR  
exactly for the input types

➤ Manage LLVM compilation

➤ Execute compiled function

�25

LLVM
➤ LLVM is a compiler infrastructure project

➤ Many frontends for languages: C, C++
Fortran, Haskell, Rust, Julia, Swift, …

➤ Many backends for hardware: almost all
CPU vendors add support and optimise

➤ Numba could be considered the Python
front-end to LLVM

➤ LLVM is shipped as a Python package
“llvmlite" that Numba depends on

➤ Numba team at Anaconda Inc. builds
numba and llvmlite for conda and pip

LLVM intermediate representation (IR) example:

�26

CYTHON VS. NUMBA
➤ Like Numba, Cython is often used to

speed up numeric Python code

➤ Cython is an “ahead of time” (AOT)
compiler of type-annotated Python to C

➤ Cython is more widely used, easier to
debug, very good at interfacing C/C++

➤ Numba is easier to use: no type
annotations, no C compiler, but
sometimes harder to debug (LLVM IR)

➤ Numba optimises JIT for your CPU or
GPU, no need to build and distribute
binaries for many architectures

Source: https://en.wikipedia.org/wiki/Cython
�27

https://en.wikipedia.org/wiki/Cython

NUMBA ALTERNATIVES
➤ Many other great tools exist for high-

performance computing with Python

➤ Cython/C/C++/pybind11 to create
Python C extensions

➤ PyPy is an alternative to CPython, that
JIT-compiles the whole program

➤ TensorFlow, JAX, PyTorch, Dask, …
use Python & Numpy as the language to
specify computation, but then compile
and execute in various ways

➤ How to do HPC from Python?  
Not an easy choice!

�28

MORE NUMBA

�29

NUMBA -S
➤ From the command line: 

numba -s 
numba --sysinfo

➤ From IPython or Jupyter: 
!numba -s

➤ Gives you all relevant information:

➤ Hardware: CPU & GPU

➤ Python, Numba, LLVM versions

➤ SVML: Intel short vector math library

➤ TBB: Intel threading building blocks

➤ CUDA & ROC

�30

PARALLEL ACCELERATOR
➤ Add parallel=True to use multi-core

CPU via threading

➤ Backends: openmp, tbb, workqueue

➤ Intel Threading Building Blocks needs 
$ conda install tbb

➤ Works automatically for Numpy array
expressions - no code changes needed

3.2x speedup on my 4-core CPU

�31

PARALLEL ACCELERATOR
➤ Use numba.prange with parallel=True

if you have for loops

➤ With the default parallel=False,
numba.prange is the same as range.

➤ You can try out different options:

2.2x speedup on my 4-core CPU
�32

FASTMATH
➤ Add fastmath=True to trade accuracy for

speed in some computations

➤ IEEE 754 floating point standard requires
that loop must accumulate in order

➤ With fastmath=True, vectorised
reduction is used, which is faster

➤ Another way to speed up math functions
like sin, exp, tanh, … is this: 
$ conda install -c numba icc_rt

➤ If available, Numba will tell LLVM to use 
Intel Short Vector Math Library (SVML)

�33

HOW FAST IS NUMBA?
➤ Numba gives very good performance, and many options to tweak the computation

➤ There is no simple answer how Numba compares to Python, Cython, Numpy, C, …

➤ Always define a benchmark for your application and measure!

Numpy/Python speedup: 100x
Numba/Numpy speedup: 2x

�34

NUMPY UFUNCS
➤ Numpy functions like add, sin, … 

are universal functions (“ufuncs”)

➤ They all support array broadcasting, data
type handling, and some other features
like accumulate or reduce.

➤ So far, you had to write C and use the
Numpy C API to make your own ufunc

�35

NUMBA.VECTORIZE
➤ The @numba.vectorize decorator makes

it easy to write Numpy ufuncs.

➤ Just write operation for one element

➤ You can give a type signature, or list of
types to support, and Numba will
generate one ufunc on vectorize call

➤ If no signature is given, a DUFunc
dispatcher is created, which dynamically
will create ufunc for given input types on
function call.

�36

NUMBA - A FAMILY OF COMPILERS
➤ Numba has more compilers, all implemented as Python decorators. 

This was just a quick introduction, see http://numba.pydata.org/

➤ @numba.jit — regular function

➤ @numba.vectorize — Numpy ufunc

➤ @numba.guvectorize — Numpy generalised ufunc

➤ @numba.stencil — neighbourhood computation

➤ @numba.cfunc — C callbacks

➤ @numba.cuda.jit — NVidia CUDA kernels

➤ @numba.roc.jit — ARM ROCm kernels

�37

http://numba.pydata.org/

WHO USES NUMBA?

$ whoami
jakevdp

“I’m becoming more and more convinced that Numba
is the future of fast scientific computing in Python.” 
— Jake Vanderplas (2013)

“The numeric Python community should consider
adopting Numba more widely within community code.” 
— Matthew Rocklin (2018)

�38

WHO USES NUMBA?
➤ Many people and applications use it for

their work and projects

➤ Large libraries like Numpy, Scipy, pandas,
scikit-learn, ... not yet.

➤ Some nice examples using Numba:

➤ Datashader - large data visualisation

➤ LibROSA - audio & music analysis

➤ HPAT - Intel High Performance Toolkit
for big data, supports pandas

�39

➤ Numba is a type-specialising JIT compiler from Python byte code to LLVM IR

➤ Started 2012, current version is v0.44, well on the road to v1.0.

➤ Use your CPU or GPU well, just by writing Python and adding a decorator

➤ Use @numba.jit for normal functions, and @numba.vectorize for Numpy ufuncs 
To check your machine & installation: numba -s 
Consider parallel=True and fastmath=True to run faster on the CPU  
To get Intel SVML: conda install -c numba icc_rt

➤ Thanks to the Numba devs at Anaconda, and contributions by Intel and others!!!

SUMMARY & CONCLUSIONS

�40

