
10 WAYS TO DEBUG PYTHON CODE
Christoph Deil, PyConDE 2019
Slides at https://christophdeil.com

1

https://christophdeil.com

WHAT IS DEBUGGING?

Harvard Mark II computer operator log 1947.
Use of term “bug” to describe defects or malfunctions
appears in engineering jargon since 1870s
https://en.wikipedia.org/wiki/Software_bug

2

https://en.wikipedia.org/wiki/Software_bug

LEARN DEBUGGING?

➤ Try to avoid bugs and debugging!
Write clean & simple code & tests.

➤ Debugging is often annoying, frustrating,
unpredictable how long it will take

➤ Personal cost: life quality

➤ Economic cost: 100s billion EUR / year

3

LEARN DEBUGGING!

➤ There will be bugs and debugging!

➤ If you’re a programmer or data scientist,
debugging is unavoidable

➤ Learn and train to be ready and efficient

➤ Basics are simple.
Time investment will pay off.

4

WHY LEARN 10 WAYS?
➤ Different tasks require different tools:

➤ Code in PyCharm? → Debug in PyCharm!
➤ Work in Jupyter? → Debug in Jupyter!
➤ Too many bugs? → Write and debug tests!
➤ Bad performance → Profiling
➤ Bugs in production → Logging
➤ …

➤ Goal of this presentation:
➤ Overview for beginners
➤ “Learn what to learn”

5

10 WAYS TO DEBUG PYTHON CODE — OVERVIEW
1. Read code
2. Read tracebacks
3. print
4. Python debugger (pdb)
5. IPython & Jupyter
6. PyCharm & VS Code
7. test
8. profile
9. log
10. duck

Many topics not covered, e.g. no concurrency, C extensions, web apps.
6

DO YOU USE A DEBUGGER?

➤ Yes, regularly

➤ Yes, sometimes

➤ No, almost never

7

WHAT FRACTION OF YOUR DEVELOPMENT TIME DO YOU SPEND DEBUGGING?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

8

1. READ CODE

9

LEARN TO READ PYTHON CODE
➤ Need mental model for code execution

➤ Execution:
➤ Mostly top to bottom
➤ Function calls create stack frames
➤ Import statements execute other files

➤ Everything is an object
➤ “def ” → function object
➤ “class” → class object
➤ “import” → module object

➤ Variables are references to objects
10

PYTHONTUTOR.COM — DEMO

➤ Example: DEMO LINK

➤ Similar to visual debuggers:

➤ point to next line, step,
variables, frames, objectsStack of frames.

Function call: add
function return: pop 11

http://pythontutor.com
http://tiny.cc/zil8dz

LEARN TO READ CODE — TIPS
➤ Have a clear mental model how Python executes code!

It’s the basis of all Python code reading, writing, debugging, …

➤ Try examples with pythontutor.com or nbtutor or a visual debugger

➤ Read Python tutorials. Some good free resources:

➤ Official Python tutorial

➤ Whirlwind tour of Python by Jake VanderPlas

➤ Python Data Science Handbook by Jake VanderPlas

➤ Python epiphanies by Stuart Williams (YouTube)

12

http://pythontutor.com
https://github.com/lgpage/nbtutor
https://docs.python.org/3/tutorial/index.html
https://jakevdp.github.io/WhirlwindTourOfPython/
https://jakevdp.github.io/PythonDataScienceHandbook/
https://nbviewer.jupyter.org/github/oreillymedia/python_epiphanies/blob/master/Python-Epiphanies-All.ipynb
https://www.youtube.com/watch?v=-kqZtZj4Ky0

2. READ TRACEBACKS

13

LEARN TO READ TRACEBACKS
➤ Debugging often starts with an exception

and traceback (“function call stack”)
➤ “Silent bugs” with incorrect output, but no

exception, are harder — where to start?

Check exception type and error message first

Read function call stack to
see where the error occurred

Often the bug is in
“your code” and you
can ignore the part
from standard libraries

Stack frame

Stack frame

14

EXCEPTIONS AND ERRORS
➤ In Python, “Exception” and “Error” often

mean the same thing: instances of a class
that derives from BaseException:

➤ SyntaxError and IndentationError occur
on import, the rest on line execution

➤ With Python, you’ll get errors all day
long. It’s a feature, not a bug!

15

CHAINED EXCEPTIONS
➤ Chained exception: two (or more)

exceptions and tracebacks

➤ Occurs when a second exception happens
in except part of a try-except statement

➤ This example: bug in error handling code

➤ You’ll sometimes get this from libraries
that use try-except for control flow

➤ Keep calm and read both.
(Sometimes you only care about the second one)

16

EXCEPTIONS & TRACEBACKS — TIPS
➤ Learn the common exception types and common bugs that cause each one.

➤ Python tutorial on Errors & Exceptions and reference for Built-in Exceptions

➤ Uncaught exception: Python interpreter prints traceback and exits.

➤ Learn to read tracebacks and how it connects to your code.
Function call stacks, last called function where exception occurred at the bottom.

➤ Often carefully reading the traceback and source code will let you find the bug.
If not → re-run and use a debugger!

17

https://docs.python.org/3/tutorial/errors.html
https://docs.python.org/3/library/exceptions.html

3. PRINT

18

PRINT DEBUGGING
➤ Very common way to debug:

add “print” in various places

➤ Where to print which information?
(usually: a lot of code & files)

➤ Slow, annoying, error-prone

print(…)

print(…)

print(…)
19

➤ Print debugging is slow, annoying and error-prone:

➤ add print, run, add another print, re-run, iterate many times.

➤ Forget to remove? Edit files in other projects?

➤ Don’t use print → learn how to use a debugger!

➤ Adding logging.debug to poke around is not much better than adding print.
Systematic testing and logging are useful though — see #7 and #9 later.

PRINT DEBUGGING — TIPS

20

4. PYTHON DEBUGGER (PDB)

21

PYTHON DEBUGGER (PDB)
➤ PDB — feature-full command line

debugger in the Python standard library

➤ Common ways to start it:

➤ python -m pdb myscript.py

➤ Or add one line in code:
breakpoint() # since Python 3.7
import pdb; pdb.set_trace() # older Python

➤ Need to learn 5 - 10 commands to use it.
Use “h” or “help” to see them.

22

PDB COMMANDS
➤ h — help
➤ q — quit
➤ p — print (use “pp” to pretty-print)
➤ ll — “long list” source code in current function or frame
➤ w — where (print stack trace)
➤ n — next (“step over”)
➤ s — step (“step into”)
➤ c — continue (run to breakpoint or exception or program end)
➤ b — breakpoint (add or list, use “cl” to remove)
➤ u — up (in stack frame)
➤ d — down (in stack frame)

23

PDB — DEMO

24

PYTHON DEBUGGER (PDB) - TIPS
➤ Python debugger (PDB) is part of Python standard library, always available

➤ Command line interface, a bit hard to learn and remember (“h” to print help)
Suggest you try both PDB and a visual debugger (see later) and see what you like.

➤ Multiple ways to start PDB: post mortem, step and continue, breakpoints
Multiple ways so poke around: print, where, list, up, down

➤ Good resources:

➤ Python Debugging With Pdb tutorial by Nathan Jennings on RealPython.com

➤ Python module of the week tutorial for pdb by Doug Hellman

➤ Python standard library documentation for pdb

25

https://realpython.com/python-debugging-pdb/
https://pymotw.com/3/pdb/index.html
https://docs.python.org/3.6/library/pdb.html

5. IPYTHON & JUPYTER

26

IPYTHON
➤ IPython & Jupyter provide nicer interactive

REPL & debugger

➤ ipdb commands the same as pdb

➤ Just nicer to use: color, multi-line edit, tab
completion, magic commands

➤ %run — run script, -d option
➤ %debug — post-mortem enter ipdb
➤ %pdb on — auto-enter ipdb on error
➤ %xmode (plain, context, verbose, minimal)
➤ ipython -i myscript.py
➤ ipython --pdb
➤ import IPython; IPython.embed()

27

JUPYTER
➤ Jupyter has rich output that’s often useful

to check data (HTML table, plots)

➤ But the debugger in Jupyter notebooks is
the same as in IPython: ipydb

➤ A visual debugger?

➤ PixieDebugger (from 2018, but I think
it doesn’t work in JupyterLab)

➤ github.com/jupyterlab/debugger
“A JupyterLab debugger UI extension”
“In development, not yet available.”

28

https://medium.com/codait/the-visual-python-debugger-for-jupyter-notebooks-youve-always-wanted-761713babc62
https://github.com/jupyterlab/debugger

IPYTHON & JUPYTER — TIPS
➤ IPython & Jupyter have ipdb, very similar to PDB (command line interface)

➤ Generally nicer than Python REPL & PDB — use IPython & Jupyter where available

➤ Good resources:

➤ https://ipython.readthedocs.io

➤ https://jupyterlab.readthedocs.io

➤ "Errors and debugging" notebook in Data Science Handbook

➤ “Wait, IPython can do that?!” by Sebastian Witowski at EuroPython 2019

29

https://ipython.readthedocs.io
https://jupyterlab.readthedocs.io
https://jakevdp.github.io/PythonDataScienceHandbook/01.06-errors-and-debugging.html
https://youtu.be/3i6db5zX3Rw

6. PYCHARM & VS CODE

30

PYCHARM & VS CODE
➤ Many great Python editors & IDEs

➤ Key point: visual debugger!

➤ I use PyCharm, it’s awesome!
Free community edition has debugger
Very advanced IDE & code analysis

➤ VS Code looks great, as well.
Need to install Python extension extra
No payed pro version, more lightweight

➤ Many others exist: IDLE, emacs, vim, Spyder,
Mu, Xcode, Atom, Eclipse, Sublime, …

31

PYCHARM VISUAL DEBUGGER — DEMO

Breakpoint

Variables: types & values
Stack frames

Many controls available

Next line that will be executed

32

VS CODE VISUAL DEBUGGER Will not demo. A visual debugger. Very similar to PyCharm.

33

PYCHARM & VS CODE — TIPS
➤ Python IDEs offer a visual debugger.

➤ It’s awesome, try it! (Probably easier and more pleasant to learn the PDB)

➤ Recommend you try PyCharm and/or VS Code.

➤ Visit the Jetbrains and Microsoft booth if you have any questions!

➤ Good resources:

➤ Visual debugging in PyCharm by Paul Everitt
PyCharm Help: Debugging your first Python application
https://realpython.com/pycharm-guide/

➤ https://realpython.com/python-development-visual-studio-code/
https://code.visualstudio.com/docs/python/python-tutorial

34

https://youtu.be/nksiGORLDZw
https://www.jetbrains.com/help/pycharm/debugging-your-first-python-application.html
https://realpython.com/pycharm-guide/
https://realpython.com/python-development-visual-studio-code/
https://code.visualstudio.com/docs/python/python-tutorial

7. TEST

35

TEST
➤ Too many bugs & too much debugging?

➤ Need systematic effort to improve

➤ Add tests: what works and what doesn’t?

➤ Debug and fix issues via the tests

➤ Tips:

➤ Use pytest

➤ Use visual test runner & debugger

➤ If you like PDB, use use pytest --pdb

36

8. PROFILE

37

PROFILE
➤ “Make it run, make it correct, make it fast."
➤ Use debugging and testing to make it run and make it correct

➤ If not fast enough or run out of memory:
➤ Define a real-world benchmark you care about
➤ Measure / “Profile" CPU and RAM usage
➤ Try to improve performance (not covered here)

➤ Let’s look at some profiling tools (there's many more).

38

PSUTIL & PSRECORD
➤ Process-level profiling:

➤ How long does my program take?

➤ CPU utilisation (multi-core)?

➤ Memory used

➤ psutil — profile processes (current
Python process or any process)

➤ psrecord — measure CPU and memory
usage of a process and make quick plot

39

CPROFILE & PSTATS & SNAKEVIZ
➤ Function-level profiling

➤ Python standard library:

➤ cProfile — measure profile

➤ pstats — analyse profile

➤ Snakeviz

➤ Third-party tool to visualise and
browse profile results
(alternative to pstats)

40

TIMING AND PROFILING FORM IPYTHON & JUPYTER

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

41

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html

PROFILING — TIPS
➤ Process-level profiling: psutil / psrecord

➤ Function-level profiling: cProfile / pstats / snakeviz

➤ Line-level profiling: line_profiler

➤ Profile from IPython & Jupyter: %timeit, %prun, %lprun, %memit, %mprun

➤ Resources:

➤ Timing & Profiling notebook from Python data science handbook

➤ Profiling tutorial from me has many examples & links (also debugging tutorial)

42

https://jakevdp.github.io/PythonDataScienceHandbook/01.07-timing-and-profiling.html
https://github.com/Asterics2020-Obelics/School2019/tree/master/profile
https://github.com/Asterics2020-Obelics/School2019/tree/master/debug

9. LOG

43

LOGGING
➤ Logging is useful for long-running programs

➤ Sometimes the only debug information you can get from production

➤ Just a quick mention here.
See https://docs.python.org/3/howto/logging.html

44

https://docs.python.org/3/howto/logging.html

10. DUCK

45

RUBBER DUCK DEBUGGING
➤ Explain the bug & code to a rubber duck

➤ If you don’t have a duck, use a colleague

➤ Other general debugging tips:

➤ Avoid debugging by writing clean and
dumb code and tests.

➤ Avoid late-night and long debugging

➤ Create a reproducible test case.
Make it minimal.
Add as regression test before fixing.

➤ "Rubber duck debugging" on Wikipedia

46

https://en.wikipedia.org/wiki/Rubber_duck_debugging

WRAP UP

47

10 WAYS TO DEBUG PYTHON CODE — OVERVIEW
1. Read code
2. Read tracebacks
3. print
4. Python debugger (pdb)
5. IPython & Jupyter
6. PyCharm & VS Code
7. test
8. profile
9. log
10. duck

Many topics not covered, e.g. no concurrency, C extensions, web apps.
48

10 WAYS TO DEBUG PYTHON CODE — SUMMARY
➤ Avoid bugs and debugging as much as possible!

➤ There will be bugs and debugging!

➤ Learn to use a debugger!

➤ Command line: PDB, IPDB

➤ Visual: PyCharm, VS Code

49

THE END.

50

